

Developers Guide for Installing and Building Cubit
Windows 2000 / Visual .NET
Version 0.9.3

This guide has been developed to help Cubit developers correctly set up and
build the Cubit executable, including the Claro GUI (Claro) . We assume that
serious Cubit developers will need to work with both GUI and command line
versions of Cubit.

This guide assumes that you already installed the operating system (Windows
2000 or XP) installed on your machine. You may also have some of the software
described here already installed on your system. If so, read through the
applicable section to verify that the installed software is a correct, recent version,
and that any settings and directory structures described are set up correctly.

Assumptions

The document assumes that the user has sufficient skill with the Windows
operating system to perform the following tasks:

1. Set system variables. Cubit installation requires setting of system
variables such as CUBITROOT. System variables can be set in Windows
2000 by right-clicking the “my computer” icon, and selecting properties
from the popup menu. On the system properties panel, select the
Advanced tab, and then push the “Environment Variables” button in the
middle of the panel. In the “Environment Variables” panel, use the bottom
half titled “System Variables”. Use the New, Edit, and Delete buttons as
appropriate to set the correct system variables. REMEMBER:
Applications will need to be closed and restarted to reflect the
changes made to system variables.

2. Download and install software from the internet or from CD. All required
software is listed below.

Prerequisites
Before downloading and building Cubit, you will need two accounts and several
software tools.

Malla Account
In order to download the software, you will need an account on endo.sandia.gov
which contains the cubit repository. Contact Bob Kerr (rakerr@sandia.gov) to get
an account and password.

mailto:rakerr@sandia.gov"

Developer Password to Cubit website

In order to obtain access to developer only tools, libraries, etc., you will need to
obtain a password to the developer area of the cubit website. Contact Bob Kerr
(rakerr@sandia.gov) to get an account and password to this developer site.

Software

Install the following software, if the correct version is not already loaded on your
machine:

 WinZip compression/decompression utility version 8.0 or later. A
demo version may be downloaded from www.winzip.org .

 CCVSSH is a secure shell program that allows secure connection to
Sandia computers such as cubit.sandia.gov. CCVSSH can be
obtained from the cubit developers website
(http://cubit.sandia.gov/release/developers_tools/WINDOWS).
Dowload file ccvssh_install.exe. You will need your developer area
password to access this area.

 WinCVS version 1.20 (NOTE: the latest version 1.30 is not compatible
with CCVSSH, so make sure and get version 1.20 for now.

 CMAKE is an open source, cross-platform build system used to build
Cubit. CMAKE can be downloaded from www.cmake.org. Install
version 2.0.5 or later.

 C++ compiler. You will need to obtain and download either Visual C++
6.0 or .NET for compiling the source code. Ask your supervisor how to
obtain a copy of this program, and install using the default setup.
NOTE: Use care if installing both compilers on the same machine.
Depending on the PATH variable, one or both could get incorrect run-
time libraries and work incorrectly.

Where to Put the Code
You will be downloading two main code groups. The first is the cubit source
code. You will select a directory for this, and the code will be created in a sub-
folder called cubit under your folder. For example, if you choose a project
directory called c:\cubit_project, the cubit source tree will begin at
c:\cubit_project\cubit. In the remainder of the document, we will be referring to
this location as CUBIT_ROOT. When path or file information is called for, simply
substitute in the directory (e.g., c:\cubit_project\cubit) for the CUBIT_ROOT
portion of the path.

The second code group downloaded for windows are the cubit libraries and third
party files. Again, select a top level directory, and the code will be put into a
directory called windows_libs under this directory. Thus, if you choose

mailto:rakerr@sandia.gov"
http://www.winzip.org
http://cubit.sandia.gov/release/developers_tools/WINDOWS
http://www.cmake.org

c:\cubit_project as the top level, CVS will create a directory
c:\cubit_project\windows_libs to put the code in. In the remainder of the
document, we will be referring to this location as CUBIT_LIB. When path or file
information is called for, simply substitute in the directory (e.g.,
c:\cubit_project\windows_libs) for the CUBIT_LIB portion of the path.

Downloading Cubit Source

If you are lucky, you will now be able to start downloading Cubit source code,
provided you are careful in setting up CVS correctly.

 Define system variable CVSROOT. The value should be
:ext:user@malla.sandia.gov:/usr/local/eng_sci/CVS where the user is
the user name supplied for you malla account.

 Run the CVSSSH login program once. From your desktop, select start-
>programs->CCVSSH->ccvssh login. When prompted, enter your Malla
password.

 Run WinCVS, either from the icon on your desktop, or by selecting start-
>programs->WinCVS->WinCVS. In the WinCVS GUI, select admin-
>preferences. In the preferences dialog, under the General tab, enter the
CVSROOT value exactly as you did above for the system variable. In the
Authentication pulldown, select SSH server. Click the Globals tab. Check
the box labeled “Use TCP/IP compression”, and put a 9 in the text box.
Click the Ports tab. At the bottom, check the box labeled “Check for an
alternate rsh name:” and in the text field, enter the full path to the
CCVSSH executable (for the default installation, this is “c:\Program
Files\CCVSSH\ccvssh.exe” without the quotes). Click okay. If all has
gone well, you can now begin downloading the Cubit source code.

 In the WinCvs GUI, select admin->checkout module. In the checkout

settings dialog under “Enter the module name and path on the server:”
type cubit (caps are significant). Under “Local folder to checkout to:”,
enter the name of the directory you wish to have your cubit source under.
CVS will create a folder called cubit under the folder you select in this
step. You may put the code anywhere. Click okay to begin the download.
This will take some time to complete. Below, you may wish to write the
value of CUBIT_ROOT to be used later (for example,
c:\cubit_project\cubit):

CUBIT_ROOT = _______________________________________

 In the WinCvs GUI, select admin->checkout module. In the checkout

settings dialog under “Enter the module name and path on the server:”
type windows_libs (caps are significant). Under “Local folder to checkout

to:”, enter the name of the directory you wish to have your cubit source
under. CVS will create a folder called windows_libs under the folder you
select in this step. You may put the code anywhere; we recommend
putting it in the same folder as the cubit code checked out above. In our
examples we will use the local folder name c:\cubit_project. Click okay to
begin the download. This will take some time to complete. Below, you
may wish to write the value of CUBIT_LIB to be used later (for example,
c:\cubit_project\windows_libs):

CUBIT_LIB = _______________________________________

 Define the correct path to the latest current cubit directories and libraries.

To make this simple and less prone to error, a vbscript file has been
provided to assist. The script is located in the CUBIT_LIB\bin directory.
Double click on the set_cubit_path.vbs icon to run the program. This will
create a system variable named CUBIT_PATH which contains a rather
long specification of the paths to the various cubit components and
libraries.

 Update the system variable PATH. Edit this variable, and (if it is not

already there) add the text “%CUBITPATH%;” at the end of the PATH
variable. This will add all of the needed path information for Windows to
find Cubit libraries and components to run correctly.

Building Cubit

 Define the system variable CUBITROOT. Its value should be the full path
to the windows_libs directory created in the last step (for example,
c:\cubit_project\windows_libs).

 Start up Visual C++ .NET. From the menu, select tools->options. In the

left-hand pane, click on Projects->VC++ Directories. Under the Show
directories for pulldown, select executables. Scroll to the bottom of the
Directories box, and click on the empty box outline at the bottom of the list.
Enter the path CUBIT_LIB\bin. Select OK to finish. You may now close
Visual C++ .NET if you wish.

Building The Cubit Command Line Version

 Run CMakeSetup. Under “Where is the source code:”, Enter

CUBIT_ROOT. Under “Where to build the binaries:”, we strongly suggest
you enter a different build directory (e.g., c:\cubit_project\build\cubit).

Below, this location is written as BUILD_DIR. In the Build For: menu,
select the compiler (Visual 6 or Visual 7 .NET). Press the configure
button. CMakeSetup runs its configuration step. If the step is fully
successful, the OK button will become active. Press the OK button to
write out all CMakeSetup information. Sometimes, the configuration takes
two or more iterations to fully resolve the build parameters. Keep pressing
configure until OK becomes active and the build process can be
completed.

 Open Visual C++ >NET. Under the file menu, select Open->Project.
Select the path BUILD_DIR\cubit.sln . Select Build All, and wait for the
project to fully build. This may take some time.

 In the solution explorer pane, right-click on the ALL_BUILD project and
select Properties… On the Property Pages pop-up in the left-hand pane,
select Configuration Properties->Debugging. Under the Action-
>Command argument, enter BUILD_DIR\debug\cubitx.exe (for debug) or
BUILD_DIR\release\cubitx.exe. Select OK.

 To run the finished executable, press F5, or select run from the menu
buttons.

 NOTE: if windows cannot run the executable because some .dll or .lib
cannot be found, it is because the PATH variable did not get set correctly.
Try restarting windows, which will fully redefine the PATH variable. If this
does not work, you may need to contact cubit-dev@sandia.gov or your
supervisor to get it defined correctly.

Building Cubit GUI Version

 Run CMakeSetup. Under “Where is the source code:”, Enter

CUBIT_ROOT. Under “Where to build the binaries:”, we strongly suggest
you enter a different build directory (e.g., c:\cubit_project\build\cubit).
Below, this location is written as BUILD_DIR. In the Build For: menu,
select the compiler (Visual 7 .NET). Find the BUILD_INTERFACE Cache
Value, and turn it ON. Press Configure. Two more variables will appear in
Red on the left side of the Cache Values. Set COPY_INTERFACE to ON.
Set the CUBITI_COPY_DIR value to CUB IT_LIB /claro/component/cubit.
Press Configure. CMakeSetup runs its configuration step. If the step is
fully successful, the OK button will become active. Press the OK button to
write out all CMakeSetup information. Sometimes, the configuration takes
two or more iterations to fully resolve the build parameters. Keep pressing
configure until OK becomes active and the build process can be
completed.

 Open Visual C++ .NET. Under the file menu, select Open->Project. Select
the path BUILD_DIR\cubit.sln Select Build All, and wait for the project to
fully build. This may take some time. Running the project now will run the
GUI and bring up Cubit within the GUI. You may change any of the Cubit
code and rebuild to see the code changes in action. You may not change

mailto:cubit-dev@sandia.gov"

the GUI in any way using this configuration. Those few who actually have
a license to QT and are working on the GUI will have a separate, custom
setup of CMakeSetup which will create a new Claro GUI when changes
are made.

 In the solution explorer pane (upper right), right-click on the ALL_BUILD
project and select Properties… On the Property Pages pop-up in the left-
hand pane, select Configuration Properties->Debugging. Under the
Action->Command argument, enter CUBIT_LIB \claro\bin\clarox_d.exe (for
debug) or CUBIT_LIB\claro\bin\clarox.exe. Select OK.

 To run the finished executable, press F5, or select run from the menu
buttons.

 NOTE: if windows cannot run the executable because some .dll or .lib
cannot be found, it is because the PATH variable did not get set correctly.
Try restarting windows, which will fully redefine the PATH variable. If this
does not work, you may need to contact cubit-dev@sandia.gov or your
supervisor to get it defined correctly.

 Select Project->Settings from the menu. In the left hand pane, select the
ALL_BUILD project. In the right hand pane, under “Executable for debug
session, you should put the path to the clarox.exe GUI executable:
CUBIT_LIB\claro\bin\clarox_d.exe (for debug) or .
CUBIT_LIB\claro\bin\clarox.exe for release.

 NOTE: if windows cannot run the executable because some .dll or .lib
cannot be found, it is because the PATH variable did not get set correctly.
You may need to contact cubit-dev@sandia.gov or your supervisor to get
it defined correctly.

mailto:cubit-dev@sandia.gov"
mailto:cubit-dev@sandia.gov"

	Developers Guide for Installing and Building Cubit
	Windows 2000 / Visual .NET
	Version 0.9.3
	Assumptions
	Prerequisites
	Malla Account
	Developer Password to Cubit website
	Software

	Where to Put the Code
	Downloading Cubit Source
	Building Cubit
	Building The Cubit Command Line Version
	Building Cubit GUI Version

